

The Potential Benefits of CORBA-Based Solutions
for the Radar Data Acquisition System (RADAC)

by
Tim Turner

Turner Engineering
(919) 929 6851

tlturner@intrex.net

for
Real-Time Software Engineering Branch

NASA Wallops Flight Facility
Wallops Island VA

and

Computer Sciences Corporation
Wallops Island VA

6 January 2000

 2

Table of Contents

List of Figures... 2
Summary.. 3
1 Introduction ... 3
2 RADAC and CORBA ... 3
3 Demo system description... 8
4 Results and recommendations..12
Appendix A: Experiences with TAO (the ACE ORB)..16
References..17

List of Figures
Figure 1. A CORBA interface... 7
Figure 2. Map display from CORBA demo.. 8
Figure 3. Control and data flow .. 9
Figure 4. CORBA interfaces..10
Figure 5. Control states ..11
Figure 6. Filter testbed concept...13
Figure 7. Proposed implementation of filter testbed...14

 3

Summary
This report describes the benefits of the CORBA (Common Object Request Broker Architecture)
standard for the proposed RADAC (Radar Data Acquisition) system at NASA Wallops Flight
Facility, and recommends using CORBA to implement data and control interfaces in the RADAC.
The report also describes demonstration programs that were written to explore the use of CORBA
for the RADAC system. These programs are suitable for use as a starting point for the
development of the RADAC system in-house, if desired.

1 Introduction
NASA Wallops Flight Facility is considering the implementation of a new RADAR data acquisition
system to replace the current Real-Time Computer System. This effort is currently in the
Requirements Definition Phase.

Turner Engineering was hired in June 1999 to review the Requirements Document. That work
evolved into the current effort to explore the potential benefits of CORBA for the RADAC system.

1.1 RADAC system
The RADAC system will acquire data from multiple tracking sources, process the data including
filtering and best source determination, and provide graphical displays. It can be assumed that
the RADAC system will form a heterogeneous network involving a mix of computer architectures,
operating systems, and programming languages. Some of the data formats will be mission-
dependent. A goal of the new RADAC design will be to facilitate the rapid adaptation of the
system for new missions, in order to provide competitive launch services in the future.

1.2 CORBA standard
CORBA is an international, open-systems standard for inter-process communication. In CORBA,
interfaces are viewed as distributed objects, containing both data and functions (methods).
CORBA translates between differing machine architectures, operating systems, and programming
languages, and provides a high-level way to define and implement new interfaces.

1.3 In this document
Section 2 outlines some of the benefits of CORBA for the RADAC system. In Section 3, we
describe our experiences with CORBA in a proof-of-concept demonstration. Section 4 presents
our results and recommendations for future work. Finally, Appendix A relates our experience
using TAO, a free CORBA implementation from Washington University.

2 RADAC and CORBA
CORBA offers numerous advantages to the RADAC system:
♦ rapid turn-around for new missions
♦ easy to extend system functionality
♦ keep hardware and software options open
♦ reliable, respectable real-time performance
♦ additional CORBA capabilities

2.1 Rapid turn-around
In order to offer competitive launch services, Wallops must be able to tool up quickly for new
missions or for evolving mission requirements. Frequently, the comment and format of telemetry
data changes between missions. In the current system, all values are converted to 32-bit
integers, whose meaning, format, and units are described in tables. Programmers are
responsible for encoding the data in the telemetry processor, then decoding the data

 4

downstream, including possibly swapping bytes if the receiving processor uses a different byte
order than the sending processor.

With CORBA, it is possible to express data using a variety of data types, including integer,
floating point, enumerated types, characters, strings, arrays, and structs. Values can be stored
directly in engineering units. CORBA handles the translation of data representations between
differing computer architectures. The impact on turn-around is that the CORBA specification of
the data format can be read and interpreted by machines and humans, and many of the
programming steps for handling new data formats are completely automated.

There is potential for further productivity increases. Some CORBA implementations (called
Object Request Brokers, or ORB’s) offer editors for defining data interfaces, effectively
eliminating another programming step. It is also possible to develop an automated logging
system using CORBA services, providing a platform-independent file format with no additional
programming required for new data formats.

For example, here is the nominal data specification for the demo system, written in CORBA’s
Interface Definition Language (IDL):

 struct Nom_info
 {
 float pgm_time; // program time (seconds)
 float speed; // nominal speed (m/s)
 float pos_lat; // nominal pp latitude (degrees)
 float pos_long; // nominal pp longitude (degrees)
 float pos_alt; // nominal pp altitude (feet)
 float flt_el; // nominal body elevation (degrees)
 float flt_az; // nominal body azimuth (degrees)
 float iip_lat; // IIP latitude (degrees)
 float iip_long; // IIP longitude (degrees)
 };

Data types can be as elaborate as you wish. Here’s a refinement of the above:

 struct LLA_point
 {
 float lat; // latitude (degrees)
 float long; // longitude (degrees)
 float alt; // altitude (feet)
 };

struct LL_point
 float iip_lat; // IIP latitude (degrees)
 float iip_long; // IIP longitude (degrees)
 };

 struct Nom_info
 {
 float pgm_time; // program time (seconds)
 float speed; // nominal speed (m/s)
 LLA_point pp; // present position
 float flt_el; // nominal body elevation (degrees)
 float flt_az; // nominal body azimuth (degrees)
 LL_point iip; // IIP
 };

 5

2.2 Extending system functionality
It is easy to define new interfaces using CORBA, as seen from the example above. If the system
is properly implemented, it is also easy to create new code modules to plug into the system. In
the demo system, the code has been modularized so that the programmer needs only to code the
functionality provided by the new module. The control interface, control logic, and data interface
code is all inherited from parent classes in C++.

Specifically, to implement a new module using the demo system code, you supply the actions for
the control interface routines such as init(), start(), and shutdown(), and for the processing steps
to be called from data interface routine push(), which receives the data.

Note that CORBA provides language bindings for a number of high-level languages, including C,
C++, Ada, Smalltalk, and Java. A particular ORB will support one or more of these. We used
TAO from Washington University, which only supports C++.

2.3 Keeping hardware and software options open
Real-time launch systems tend to last a long time. In the end, the system may be running on
hardware that is impossible to maintain because the manufacturers have gone out of business.
The operating systems and programming languages used may also become impediments to
maintenance, much less further development of the system.

The hardware, operating system, and computing language(s) comprise the platform for a
computer program. A major advantage of CORBA is that it is platform-independent. For a
particular computing language, the code interface to a CORBA object is immutable for all
operating systems and hardware architectures. Also, the server can use a different ORB
computer language than its clients.

If five years out, you want to switch to a different computer architecture, architecture, or language,
if there is an ORB available for that platform, your interfaces will be up and running. If you decide
to switch ORB’s, the clients will all work without modification, and the servers should be readily
adaptable. There are currently dozens of commercially available ORB’s on the market.

2.4 Real-time performance
CORBA delivers respectable real-time performance, with guaranteed delivery. If a transmission
fails for some reason, the problem can be resolved by an exception handler.

Using CORBA’s interface protocol, you can specify whether you want data transfers to block,
meaning the server will wait until the client has received the data, or not. There are no blocking
transfers in the demo system, so that a slow or failed process cannot cause another process to
hang.

Using a free ORB from Washington University, and a 300 MHz PC, we measured latencies of
approximately 1 ms per hop. That is two orders of magnitude faster than the time interval of the
program clock.

If one prefers not to use the CORBA protocols, it’s possible to convert the data to CORBA’s
binary format, then transmit the data using some other protocol, such as broadcast sockets.

 6

2.5 Other CORBA capabilities
CORBA will be useful to the RADAC system simply for its clean handling of interfaces and
communication protocols. There are, however, many more capabilities, whose utility may only
show up later on. These are the hidden advantages of adopting a mature, open-systems
standard with broad industry support. I’ll point out a few of these advantages here. Non-
programmers may want to skip over the fine points.

Using CORBA, it’s easy for your program to respond to many different input sources within a
single thread of control. That means that you don’t have to create an additional process or task
for each simultaneous input source. For example, the demo system employs both control and
data interfaces. Every other process in the system responds to commands from a controller
process, which in turn responds to user inputs. All the processes besides the controller receive
commands in the form of CORBA messages, so that their data interfaces are under control of
their control interfaces. The extreme case is a map display process, which handles control and
data inputs, keyboard commands, and mouse clicks simultaneously.

CORBA has many additional options in the form of CORBA services. One of these, the naming
service, is used extensively during start-up of the demo system. The Naming Service provides a
distributed table look-up. It allows you to store information, accessed by strings. In the demo, the
controller process and the data server process register with the Naming Service, the other
processes, which need these two in order to run, simply look up their location using the Naming
Service. In this way, there is no prior information in the system about where processes are
located, not even the Naming Service itself.

Other services provide additional support roles. For example, there is a service to convert
interface data to and from the internal form CORBA uses. This makes it possible to generate file
writers and readers automatically, or to use your own protocol for passing data defined by
CORBA.

In addition, should the need arise for, e.g., real-time, distributed database with queries, CORBA
provides services for that as well.

2.6 CORBA: how do you use it?
As a programmer, using CORBA involves the following steps:

♦ you define interfaces in Interface Description Language (IDL)
♦ IDL compiler produces code for the client and server sides of the interface
♦ you write code to implement the server actions
♦ you write the client application

Figure 1 shows a schematic of a CORBA interface. The process initiating a transaction is the
client. The answering process is the server. The code that handles the transfer of data across
the interface belongs to the ORB. Both the client and server view the interface as a set of
subroutines. The client initiates a request by calling an interface routine, which causes the server
to enter the corresponding routine on the server side. As with normal subroutines, data can be
passed in either direction.

 7

client process server process

client-side
interface

server-side
interface

CORBA
interface
protocol

data

Figure 1. A CORBA interface

 8

Figure 2. Map display from CORBA demo

3 Demo system description
As part of our investigation into the CORBA standard, we put together two software
demonstrations that attempt to show how CORBA could be used in the RADAC system. In the
first demo, we used CORBA interfaces to pass nominal flight data at 10 points per second. In the
second demo, we optimized the data passing and added control interfaces. Under this new
scheme, a control program starts the other programs. It then sends commands to these
programs via CORBA interfaces, under user control. This illustrates how CORBA can be used to
configure and control an entire RADAC system from a single console.

The CORBA demos serve a number of purposes:
♦ To show the viability of using CORBA in a RADAC-like system. In the demo, vehicle present

positions and instantaneous impact points are transferred at 10 points per second, which is
representative of the types of data and the sampling interval in the real system. In addition,
the demo shows how CORBA can be used to implement a system with central start-up and
control.

♦ To resolve technical issues which might be problematic to the implementation of the RADAC
using CORBA:
♦ integrate control and data flows
♦ combine CORBA and interactive displays using X Windows
♦ enable code re-use
♦ measure timing performance

 9

Since the second demo is an extension of the first, we will only describe the second one here.
The demo consists of five processes communicating through CORBA interfaces. Figure 3 shows
the system diagram, including communication paths.

controller

consum e r
displayconsum e rdata serversupplier

control

data

Figure 3. Control and data flow

The processes are as follows
♦ The Controller starts the other processes, and sends commands under user control.
♦ The Supplier reads vehicle present position (PP) and Instantaneous Impact Point (IPP) data

from a file, and sends the data to the Data Server 10 times per second
♦ The Data Server accepts new data, and sends it to registered consumers
♦ The Consumer accepts the PP and IIP data from the data server, and displays it in a text

window
♦ The Consumer Display accepts the PP and IIP data from the data server, and displays their

traces on a map display

The architecture of the real RADAC, while more complex, will be quite similar. There will
generally be multiple suppliers and consumers of data, as well as modules that will accept
CORBA inputs and produce CORBA outputs in turn, for example Kalman filters. Consequently,
there will be many more types of messages. However, the control logic and control mechanisms
will remain essentially the same.

All of the control and data flows in the demo system are implemented as CORBA interfaces.
Figure 4 shows how the interfaces are arranged. There are four types of interfaces:

♦ Control interfaces provide the commands by which processes can be remotely controlled
♦ The Controller interface allows other processes to register with the controller process, and to

report changes in their internal state
♦ The Data Server interface accepts data from suppliers. It also accepts registration requests

from consumer processes.
♦ Consumer interfaces accept data from the data server

 10

This type of system is driven by the data inputs. In the demo sequence, the supplier is in a timed
loop executing 10 times per second. With each iteration, the supplier reads data from a file, and
sends it to the data server. In turn, the data server sends a copy of the data to each consumer
process that has previously registered to receive it. In the RADAC system, the driving input for
this process will be the program time clock.

controller

consumer
displayconsumerdata serversupplier

client i/f

process

server i/f

control i/f

controller i/f

data server i/f

consumer i/f

Figure 4. CORBA interfaces

Both the controller and control interfaces implement finite state machines. Figure 5 shows a state
transition diagram for the control interface. The Control interface is always in one of the following
states:

♦ Init
♦ Ready
♦ Running
♦ Paused
♦ Shutdown

 11

init shutdownpausedrunningready

k|q
k|q

k|q
k|qi

r

s p

o

o

i init()

s start()

p pause()

s resume()

k kill()

q quit()

o reset()

(not yet implemented)

Figure 5. Control states

The state transitions occur when the control interface receives a command from the controller.
The commands are indicated on the diagram.

The controller sends commands when the operator requests them. When the operator chooses
the start command, for example, the controller sends the start command to each process in the
list.

The controller’s state diagram is similar to that of the controlled process, but the conditions
causing the state transitions are more complex. The controller will transition to a new state when
all of the controlled processes have moved to that state. Since the controller doesn’t wait for a
transaction to complete, the other processes notify the controller whenever they change there
state. In addition, the controller recognizes certain processes as critical, in which case it will not
send commands to any further processes in the list until the critical process has confirmed its
state change. These factors complicate the implementation of the controller logic.

We can now describe the entire demo sequence. The following points are worth keeping in mind:

♦ Information about the demo processes is read from a text file at init time. There is no prior

knowledge about any of these processes, other than what appears in the file.
♦ The demo processes find each other at init time, using the CORBA naming service. There is

no prior knowledge about the location of any process
♦ The demo processes can run on one or more processors
♦ Each data and control path is a CORBA interface
♦ There is no waiting for transactions to complete. A slow or stalled process cannot hang up

the whole system, except by failing to produce the expected outputs
♦ CORBA translates between diverse platforms automatically.

In the course of the demo, the following sequence of events takes place:

The operator starts the controller process from the command line.

The controller process reads the file $RADAC_ROOT/demo_2/data/processes.dat to
find out which programs to run. Each line of the file has the

 12

following format:

 name wait_for_confirm command

There should only be a single space between each field.

 name is a unique identifier which is used to look up the process in
 a process table. It should not contain any white space.

 wait_for_confirm is a flag, defined as either 0 or 1. If 1, the
 controller suspends processing until the process confirms that the
 command has been executed. Processes always send confirmation upon
 completion of any command.

 command is the shell command which starts the process.

The controller presents a “menu” of keyboard options. These are

 i initialize. Start the processes in the file processes.dat. Each
 process looks up the controller's object reference using the
 naming service. It then registers its own object reference with
 the controller. Ordinary processes (all except the data server)
 also look up the data server's object reference. Consumer
 processes register with the data server to receive data.

 s start. Begin real-time execution. The supplier process enters a
 timed loop, reading the nominal data from a file, and sending a
 data record 10 times per second. The data server accepts the
 data, then passes it on to all registered consumers.

 p pause. The supplier stops reading and sending data. All other
 processes wait for new data as usual.

 r resume. The supplier resumes sending data.

 k kill. The controller sends the shutdown command to each process.
 The processes shut down gracefully, then exit. The normal
 shutdown condition is to receive confirmation of the shutdown,
 but to receive an exception on the shutdown command itself.
 That's because the process shuts down without exiting the
 shutdown() method.

 q quit. The controller shuts down all processes, then exits.

4 Results and recommendations

4.1 Results
This study and proof of concept have demonstrated the viability of CORBA for the new RADAC
system. The demo system use CORBA to implement both data and control interfaces. The
demo features a control process which is able to start, initialize, pause, resume, and shut down
all the other processes.

 13

The demo system provides a simplified, but functionally complete method for implementing data
and control interfaces, including a high-level method of data description which takes care of
differences in machine architecture, operating system, and computing language between different
processors in the system. Should the team decide to implement the RADAC in-house, the demo
system would form a suitable baseline.

In the course of building the demo system, several technical hurdles have been resolved,
including the integration of CORBA interfaces with X window displays, and the modularization of
the code so that it is straightforward to create new interfaces and processing modules.

In addition, we were able to obtain some timing measurements to assess the performance of the
CORBA interfaces. Running on a 300 MHz PC with a 10 Mb/s Ethernet adapter, we took the
following averages:

 Overhead (time to send data) 150 microseconds
 Latency (end-to-end time delay) 1 millisecond / hop

By comparison the clock interval at 10 points per second is 100 milliseconds.

4.2 Recommendation
We recommend that the RADAC team strongly consider the use of CORBA in the RADAC
system, whether or not the system is developed in-house. Until a decision is reached as to how
to proceed with the RADAC implementation, we further recommend that Wallops continue to
extend the capabilities of the current demo system. If the demo system forms the basis of the
proposed filter testbed, then adding features such as a data logging system will increase the
utility of the filter testbed in addition to providing a viable option for the RADAC implementation.

Data
Translator

“FEP”

Filter
Testbed

Existing
Mission

Graphics
Existing
RADAC

IP in

Serial in

LTAS/MDDF in

IP

LTAS IP

Figure 6. Filter testbed concept

 14

Data
Server

Data
Translator

“FEP”

Filter
Testbed

Existing
Mission

Graphics

Existing
RADAC

IP in

Serial in

LTAS/MDDF in

CORBA

LTAS CORBA?

CORBA

CORBA

Controller

CORBA
CORBA CORBA

Figure 7. Proposed implementation of filter testbed

Figure 6 shows the proposed filter testbed system. Figure 7 shows a possible implementation of
the system building upon the current demo system. Such a course of action will involve the
following steps:

♦ Extend the data server to handle multiple IDL data types. All data types should inherit from a

common parent type. The data server should maintain a table of known data types. Each
table entry should contain a list of registered clients

♦ Extend the consumer interface to handle multiple IDL data types. Each consumer interface
should inherit from a common parent interface definition. The data server will see each
consumer interface as its common parent type.

♦ Implement a platform-independent data logging capability. A logical place to put this would
be in the data server. As the data server receives each piece of data, it uses CORBA
services to convert the data automatically to a platform-indepent, binary form.

♦ Implement a platform-independent playback capability using CORBA services to reconstruct
the log data on any CORBA platform.

♦ Implement the new data types needed for the timing and tracking sources. Add code to the
front end processor to pass the data to the data server.

♦ Implement the filter process, with data interfaces to obtain the timing and tracking data from
the data server. The filter outputs should also be sent back to the data server. Use real-time
plotting software for display, interpretation, and evaluation of filter outputs.

In addition, there are a number of optional steps which would further demonstrate the utility of the
CORBA concept:

♦ Develop a graphical user interface for the controller process, consisting of a health and status

display plus a set of menus, forms and dialog boxes. Provide for interactive editing of the list
of component processes.

♦ Develop a configuration setup capability, including
§ A source file format, reader and writer for configuration parameters
§ A central or distributed repository of configuration parameters
§ CORBA interfaces to pass interface parameters

♦ Explore the export of data to remote computers for viewing with internet browser technology

 15

♦ Modify existing displays to operate on CORBA/IDL data.
♦ Port display programs which use Silicon Graphics’ proprietary GL library, to OpenGL, an

open-systems standard.
♦ Investigate the advantages of other ORB’s, including development tools and support for

multiple languages.

 16

Appendix A: Experiences with TAO (the ACE ORB)

TAO is a free ORB from Washington University in Saint Louis. TAO is built upon ACE (Adaptive
Communication Environment), which provides portable C++ wrappers for many operating system
services, as well as a rich class library for inter-process communications.

We found that TAO and ACE work quite well, with very good real-time performance. ACE and
TAO both run on many Unix and Windows platforms. There are many commercial applications
based on ACE, and support is available from an outside company.

The main disadvantage to TAO is that it only supports C++. An ORB which at least supported C
as well would be attractive to a larger group of programmers. We found that the documentation,
while substantial was a bit lacking in some key areas, especially in the area of integrating CORBA
and X Windows. On the other hand, TAO comes with a large body of sample programs, one of
which was the starting point for our first demo program. We also encountered a conflict when we
tried to use STL (Standard Template Library), a class library which is part of the emerging C++
standard. It is possible in principle to use STL with TAO by explicitly instantiating the STL
classes, but we never got that to work.

In sum, though we found TAO to work quite well, it is worth a look at other ORB’s for their support
of multiple languages, as well as their development tools.

 17

References
CORBA documents and specifications http://www.omg.org/
TAO documentation and downloads http://www.cs.wustl.edu/~schmidt/TAO.html
RADAC requirements http://www.wff.nasa.gov/~RADAC/index.html

 18

